Copied to
clipboard

G = C42.180D10order 320 = 26·5

180th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.180D10, C10.862+ 1+4, C10.412- 1+4, C4⋊Q818D5, C4⋊C4.127D10, (C2×Q8).90D10, D10⋊Q849C2, D103Q839C2, C422D520C2, Dic5⋊Q828C2, (C2×C20).641C23, (C4×C20).274C22, (C2×C10).279C24, C2.90(D46D10), Dic5.Q843C2, D10.13D4.5C2, C20.23D4.11C2, (C2×D20).180C22, C4⋊Dic5.256C22, (Q8×C10).146C22, C22.300(C23×D5), D10⋊C4.76C22, C56(C22.57C24), (C4×Dic5).176C22, (C2×Dic5).147C23, C10.D4.88C22, (C22×D5).124C23, C2.42(Q8.10D10), (C2×Dic10).199C22, (C5×C4⋊Q8)⋊21C2, C4⋊C4⋊D548C2, (C2×C4×D5).161C22, (C5×C4⋊C4).222C22, (C2×C4).222(C22×D5), SmallGroup(320,1407)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.180D10
C1C5C10C2×C10C22×D5C2×C4×D5D103Q8 — C42.180D10
C5C2×C10 — C42.180D10
C1C22C4⋊Q8

Generators and relations for C42.180D10
 G = < a,b,c,d | a4=b4=1, c10=d2=a2, ab=ba, cac-1=a-1, dad-1=a-1b2, cbc-1=b-1, dbd-1=a2b, dcd-1=c9 >

Subgroups: 678 in 196 conjugacy classes, 91 normal (27 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×Q8, Dic5, C20, D10, C2×C10, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C422C2, C4⋊Q8, C4⋊Q8, Dic10, C4×D5, D20, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, C22.57C24, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C4×C20, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, Q8×C10, C422D5, Dic5.Q8, D10.13D4, D10⋊Q8, C4⋊C4⋊D5, Dic5⋊Q8, D103Q8, C20.23D4, C5×C4⋊Q8, C42.180D10
Quotients: C1, C2, C22, C23, D5, C24, D10, 2+ 1+4, 2- 1+4, C22×D5, C22.57C24, C23×D5, D46D10, Q8.10D10, C42.180D10

Smallest permutation representation of C42.180D10
On 160 points
Generators in S160
(1 96 11 86)(2 87 12 97)(3 98 13 88)(4 89 14 99)(5 100 15 90)(6 91 16 81)(7 82 17 92)(8 93 18 83)(9 84 19 94)(10 95 20 85)(21 125 31 135)(22 136 32 126)(23 127 33 137)(24 138 34 128)(25 129 35 139)(26 140 36 130)(27 131 37 121)(28 122 38 132)(29 133 39 123)(30 124 40 134)(41 79 51 69)(42 70 52 80)(43 61 53 71)(44 72 54 62)(45 63 55 73)(46 74 56 64)(47 65 57 75)(48 76 58 66)(49 67 59 77)(50 78 60 68)(101 159 111 149)(102 150 112 160)(103 141 113 151)(104 152 114 142)(105 143 115 153)(106 154 116 144)(107 145 117 155)(108 156 118 146)(109 147 119 157)(110 158 120 148)
(1 27 70 160)(2 141 71 28)(3 29 72 142)(4 143 73 30)(5 31 74 144)(6 145 75 32)(7 33 76 146)(8 147 77 34)(9 35 78 148)(10 149 79 36)(11 37 80 150)(12 151 61 38)(13 39 62 152)(14 153 63 40)(15 21 64 154)(16 155 65 22)(17 23 66 156)(18 157 67 24)(19 25 68 158)(20 159 69 26)(41 140 85 111)(42 112 86 121)(43 122 87 113)(44 114 88 123)(45 124 89 115)(46 116 90 125)(47 126 91 117)(48 118 92 127)(49 128 93 119)(50 120 94 129)(51 130 95 101)(52 102 96 131)(53 132 97 103)(54 104 98 133)(55 134 99 105)(56 106 100 135)(57 136 81 107)(58 108 82 137)(59 138 83 109)(60 110 84 139)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 145 31 155)(22 154 32 144)(23 143 33 153)(24 152 34 142)(25 141 35 151)(26 150 36 160)(27 159 37 149)(28 148 38 158)(29 157 39 147)(30 146 40 156)(41 86 51 96)(42 95 52 85)(43 84 53 94)(44 93 54 83)(45 82 55 92)(46 91 56 81)(47 100 57 90)(48 89 58 99)(49 98 59 88)(50 87 60 97)(61 78 71 68)(62 67 72 77)(63 76 73 66)(64 65 74 75)(69 70 79 80)(101 112 111 102)(103 110 113 120)(104 119 114 109)(105 108 115 118)(106 117 116 107)(121 140 131 130)(122 129 132 139)(123 138 133 128)(124 127 134 137)(125 136 135 126)

G:=sub<Sym(160)| (1,96,11,86)(2,87,12,97)(3,98,13,88)(4,89,14,99)(5,100,15,90)(6,91,16,81)(7,82,17,92)(8,93,18,83)(9,84,19,94)(10,95,20,85)(21,125,31,135)(22,136,32,126)(23,127,33,137)(24,138,34,128)(25,129,35,139)(26,140,36,130)(27,131,37,121)(28,122,38,132)(29,133,39,123)(30,124,40,134)(41,79,51,69)(42,70,52,80)(43,61,53,71)(44,72,54,62)(45,63,55,73)(46,74,56,64)(47,65,57,75)(48,76,58,66)(49,67,59,77)(50,78,60,68)(101,159,111,149)(102,150,112,160)(103,141,113,151)(104,152,114,142)(105,143,115,153)(106,154,116,144)(107,145,117,155)(108,156,118,146)(109,147,119,157)(110,158,120,148), (1,27,70,160)(2,141,71,28)(3,29,72,142)(4,143,73,30)(5,31,74,144)(6,145,75,32)(7,33,76,146)(8,147,77,34)(9,35,78,148)(10,149,79,36)(11,37,80,150)(12,151,61,38)(13,39,62,152)(14,153,63,40)(15,21,64,154)(16,155,65,22)(17,23,66,156)(18,157,67,24)(19,25,68,158)(20,159,69,26)(41,140,85,111)(42,112,86,121)(43,122,87,113)(44,114,88,123)(45,124,89,115)(46,116,90,125)(47,126,91,117)(48,118,92,127)(49,128,93,119)(50,120,94,129)(51,130,95,101)(52,102,96,131)(53,132,97,103)(54,104,98,133)(55,134,99,105)(56,106,100,135)(57,136,81,107)(58,108,82,137)(59,138,83,109)(60,110,84,139), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,145,31,155)(22,154,32,144)(23,143,33,153)(24,152,34,142)(25,141,35,151)(26,150,36,160)(27,159,37,149)(28,148,38,158)(29,157,39,147)(30,146,40,156)(41,86,51,96)(42,95,52,85)(43,84,53,94)(44,93,54,83)(45,82,55,92)(46,91,56,81)(47,100,57,90)(48,89,58,99)(49,98,59,88)(50,87,60,97)(61,78,71,68)(62,67,72,77)(63,76,73,66)(64,65,74,75)(69,70,79,80)(101,112,111,102)(103,110,113,120)(104,119,114,109)(105,108,115,118)(106,117,116,107)(121,140,131,130)(122,129,132,139)(123,138,133,128)(124,127,134,137)(125,136,135,126)>;

G:=Group( (1,96,11,86)(2,87,12,97)(3,98,13,88)(4,89,14,99)(5,100,15,90)(6,91,16,81)(7,82,17,92)(8,93,18,83)(9,84,19,94)(10,95,20,85)(21,125,31,135)(22,136,32,126)(23,127,33,137)(24,138,34,128)(25,129,35,139)(26,140,36,130)(27,131,37,121)(28,122,38,132)(29,133,39,123)(30,124,40,134)(41,79,51,69)(42,70,52,80)(43,61,53,71)(44,72,54,62)(45,63,55,73)(46,74,56,64)(47,65,57,75)(48,76,58,66)(49,67,59,77)(50,78,60,68)(101,159,111,149)(102,150,112,160)(103,141,113,151)(104,152,114,142)(105,143,115,153)(106,154,116,144)(107,145,117,155)(108,156,118,146)(109,147,119,157)(110,158,120,148), (1,27,70,160)(2,141,71,28)(3,29,72,142)(4,143,73,30)(5,31,74,144)(6,145,75,32)(7,33,76,146)(8,147,77,34)(9,35,78,148)(10,149,79,36)(11,37,80,150)(12,151,61,38)(13,39,62,152)(14,153,63,40)(15,21,64,154)(16,155,65,22)(17,23,66,156)(18,157,67,24)(19,25,68,158)(20,159,69,26)(41,140,85,111)(42,112,86,121)(43,122,87,113)(44,114,88,123)(45,124,89,115)(46,116,90,125)(47,126,91,117)(48,118,92,127)(49,128,93,119)(50,120,94,129)(51,130,95,101)(52,102,96,131)(53,132,97,103)(54,104,98,133)(55,134,99,105)(56,106,100,135)(57,136,81,107)(58,108,82,137)(59,138,83,109)(60,110,84,139), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,145,31,155)(22,154,32,144)(23,143,33,153)(24,152,34,142)(25,141,35,151)(26,150,36,160)(27,159,37,149)(28,148,38,158)(29,157,39,147)(30,146,40,156)(41,86,51,96)(42,95,52,85)(43,84,53,94)(44,93,54,83)(45,82,55,92)(46,91,56,81)(47,100,57,90)(48,89,58,99)(49,98,59,88)(50,87,60,97)(61,78,71,68)(62,67,72,77)(63,76,73,66)(64,65,74,75)(69,70,79,80)(101,112,111,102)(103,110,113,120)(104,119,114,109)(105,108,115,118)(106,117,116,107)(121,140,131,130)(122,129,132,139)(123,138,133,128)(124,127,134,137)(125,136,135,126) );

G=PermutationGroup([[(1,96,11,86),(2,87,12,97),(3,98,13,88),(4,89,14,99),(5,100,15,90),(6,91,16,81),(7,82,17,92),(8,93,18,83),(9,84,19,94),(10,95,20,85),(21,125,31,135),(22,136,32,126),(23,127,33,137),(24,138,34,128),(25,129,35,139),(26,140,36,130),(27,131,37,121),(28,122,38,132),(29,133,39,123),(30,124,40,134),(41,79,51,69),(42,70,52,80),(43,61,53,71),(44,72,54,62),(45,63,55,73),(46,74,56,64),(47,65,57,75),(48,76,58,66),(49,67,59,77),(50,78,60,68),(101,159,111,149),(102,150,112,160),(103,141,113,151),(104,152,114,142),(105,143,115,153),(106,154,116,144),(107,145,117,155),(108,156,118,146),(109,147,119,157),(110,158,120,148)], [(1,27,70,160),(2,141,71,28),(3,29,72,142),(4,143,73,30),(5,31,74,144),(6,145,75,32),(7,33,76,146),(8,147,77,34),(9,35,78,148),(10,149,79,36),(11,37,80,150),(12,151,61,38),(13,39,62,152),(14,153,63,40),(15,21,64,154),(16,155,65,22),(17,23,66,156),(18,157,67,24),(19,25,68,158),(20,159,69,26),(41,140,85,111),(42,112,86,121),(43,122,87,113),(44,114,88,123),(45,124,89,115),(46,116,90,125),(47,126,91,117),(48,118,92,127),(49,128,93,119),(50,120,94,129),(51,130,95,101),(52,102,96,131),(53,132,97,103),(54,104,98,133),(55,134,99,105),(56,106,100,135),(57,136,81,107),(58,108,82,137),(59,138,83,109),(60,110,84,139)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,145,31,155),(22,154,32,144),(23,143,33,153),(24,152,34,142),(25,141,35,151),(26,150,36,160),(27,159,37,149),(28,148,38,158),(29,157,39,147),(30,146,40,156),(41,86,51,96),(42,95,52,85),(43,84,53,94),(44,93,54,83),(45,82,55,92),(46,91,56,81),(47,100,57,90),(48,89,58,99),(49,98,59,88),(50,87,60,97),(61,78,71,68),(62,67,72,77),(63,76,73,66),(64,65,74,75),(69,70,79,80),(101,112,111,102),(103,110,113,120),(104,119,114,109),(105,108,115,118),(106,117,116,107),(121,140,131,130),(122,129,132,139),(123,138,133,128),(124,127,134,137),(125,136,135,126)]])

47 conjugacy classes

class 1 2A2B2C2D2E4A···4G4H···4M5A5B10A···10F20A···20L20M···20T
order1222224···44···45510···1020···2020···20
size111120204···420···20222···24···48···8

47 irreducible representations

dim111111111122224444
type+++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2D5D10D10D102+ 1+42- 1+4D46D10Q8.10D10
kernelC42.180D10C422D5Dic5.Q8D10.13D4D10⋊Q8C4⋊C4⋊D5Dic5⋊Q8D103Q8C20.23D4C5×C4⋊Q8C4⋊Q8C42C4⋊C4C2×Q8C10C10C2C2
# reps122222121122841248

Matrix representation of C42.180D10 in GL10(𝔽41)

1000000000
0100000000
0000100000
0000010000
00400000000
00040000000
0000000010
0000000001
00000040000
00000004000
,
40000000000
04000000000
0001000000
00400000000
0000010000
00004000000
0000000100
0000001000
0000000001
0000000010
,
03500000000
73400000000
00032000000
00320000000
0000090000
0000900000
00000000320
00000000032
00000032000
00000003200
,
73500000000
83400000000
00032000000
00320000000
00000320000
00003200000
00000000320
0000000009
00000032000
0000000900

G:=sub<GL(10,GF(41))| [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0],[40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0],[0,7,0,0,0,0,0,0,0,0,35,34,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,32,0,0],[7,8,0,0,0,0,0,0,0,0,35,34,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,9,0,0] >;

C42.180D10 in GAP, Magma, Sage, TeX

C_4^2._{180}D_{10}
% in TeX

G:=Group("C4^2.180D10");
// GroupNames label

G:=SmallGroup(320,1407);
// by ID

G=gap.SmallGroup(320,1407);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,758,219,100,1571,570,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a^-1*b^2,c*b*c^-1=b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽