metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.180D10, C10.862+ 1+4, C10.412- 1+4, C4⋊Q8⋊18D5, C4⋊C4.127D10, (C2×Q8).90D10, D10⋊Q8⋊49C2, D10⋊3Q8⋊39C2, C42⋊2D5⋊20C2, Dic5⋊Q8⋊28C2, (C2×C20).641C23, (C4×C20).274C22, (C2×C10).279C24, C2.90(D4⋊6D10), Dic5.Q8⋊43C2, D10.13D4.5C2, C20.23D4.11C2, (C2×D20).180C22, C4⋊Dic5.256C22, (Q8×C10).146C22, C22.300(C23×D5), D10⋊C4.76C22, C5⋊6(C22.57C24), (C4×Dic5).176C22, (C2×Dic5).147C23, C10.D4.88C22, (C22×D5).124C23, C2.42(Q8.10D10), (C2×Dic10).199C22, (C5×C4⋊Q8)⋊21C2, C4⋊C4⋊D5⋊48C2, (C2×C4×D5).161C22, (C5×C4⋊C4).222C22, (C2×C4).222(C22×D5), SmallGroup(320,1407)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42.180D10
G = < a,b,c,d | a4=b4=1, c10=d2=a2, ab=ba, cac-1=a-1, dad-1=a-1b2, cbc-1=b-1, dbd-1=a2b, dcd-1=c9 >
Subgroups: 678 in 196 conjugacy classes, 91 normal (27 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×Q8, Dic5, C20, D10, C2×C10, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊Q8, C4⋊Q8, Dic10, C4×D5, D20, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, C22.57C24, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C4×C20, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, Q8×C10, C42⋊2D5, Dic5.Q8, D10.13D4, D10⋊Q8, C4⋊C4⋊D5, Dic5⋊Q8, D10⋊3Q8, C20.23D4, C5×C4⋊Q8, C42.180D10
Quotients: C1, C2, C22, C23, D5, C24, D10, 2+ 1+4, 2- 1+4, C22×D5, C22.57C24, C23×D5, D4⋊6D10, Q8.10D10, C42.180D10
(1 96 11 86)(2 87 12 97)(3 98 13 88)(4 89 14 99)(5 100 15 90)(6 91 16 81)(7 82 17 92)(8 93 18 83)(9 84 19 94)(10 95 20 85)(21 125 31 135)(22 136 32 126)(23 127 33 137)(24 138 34 128)(25 129 35 139)(26 140 36 130)(27 131 37 121)(28 122 38 132)(29 133 39 123)(30 124 40 134)(41 79 51 69)(42 70 52 80)(43 61 53 71)(44 72 54 62)(45 63 55 73)(46 74 56 64)(47 65 57 75)(48 76 58 66)(49 67 59 77)(50 78 60 68)(101 159 111 149)(102 150 112 160)(103 141 113 151)(104 152 114 142)(105 143 115 153)(106 154 116 144)(107 145 117 155)(108 156 118 146)(109 147 119 157)(110 158 120 148)
(1 27 70 160)(2 141 71 28)(3 29 72 142)(4 143 73 30)(5 31 74 144)(6 145 75 32)(7 33 76 146)(8 147 77 34)(9 35 78 148)(10 149 79 36)(11 37 80 150)(12 151 61 38)(13 39 62 152)(14 153 63 40)(15 21 64 154)(16 155 65 22)(17 23 66 156)(18 157 67 24)(19 25 68 158)(20 159 69 26)(41 140 85 111)(42 112 86 121)(43 122 87 113)(44 114 88 123)(45 124 89 115)(46 116 90 125)(47 126 91 117)(48 118 92 127)(49 128 93 119)(50 120 94 129)(51 130 95 101)(52 102 96 131)(53 132 97 103)(54 104 98 133)(55 134 99 105)(56 106 100 135)(57 136 81 107)(58 108 82 137)(59 138 83 109)(60 110 84 139)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 145 31 155)(22 154 32 144)(23 143 33 153)(24 152 34 142)(25 141 35 151)(26 150 36 160)(27 159 37 149)(28 148 38 158)(29 157 39 147)(30 146 40 156)(41 86 51 96)(42 95 52 85)(43 84 53 94)(44 93 54 83)(45 82 55 92)(46 91 56 81)(47 100 57 90)(48 89 58 99)(49 98 59 88)(50 87 60 97)(61 78 71 68)(62 67 72 77)(63 76 73 66)(64 65 74 75)(69 70 79 80)(101 112 111 102)(103 110 113 120)(104 119 114 109)(105 108 115 118)(106 117 116 107)(121 140 131 130)(122 129 132 139)(123 138 133 128)(124 127 134 137)(125 136 135 126)
G:=sub<Sym(160)| (1,96,11,86)(2,87,12,97)(3,98,13,88)(4,89,14,99)(5,100,15,90)(6,91,16,81)(7,82,17,92)(8,93,18,83)(9,84,19,94)(10,95,20,85)(21,125,31,135)(22,136,32,126)(23,127,33,137)(24,138,34,128)(25,129,35,139)(26,140,36,130)(27,131,37,121)(28,122,38,132)(29,133,39,123)(30,124,40,134)(41,79,51,69)(42,70,52,80)(43,61,53,71)(44,72,54,62)(45,63,55,73)(46,74,56,64)(47,65,57,75)(48,76,58,66)(49,67,59,77)(50,78,60,68)(101,159,111,149)(102,150,112,160)(103,141,113,151)(104,152,114,142)(105,143,115,153)(106,154,116,144)(107,145,117,155)(108,156,118,146)(109,147,119,157)(110,158,120,148), (1,27,70,160)(2,141,71,28)(3,29,72,142)(4,143,73,30)(5,31,74,144)(6,145,75,32)(7,33,76,146)(8,147,77,34)(9,35,78,148)(10,149,79,36)(11,37,80,150)(12,151,61,38)(13,39,62,152)(14,153,63,40)(15,21,64,154)(16,155,65,22)(17,23,66,156)(18,157,67,24)(19,25,68,158)(20,159,69,26)(41,140,85,111)(42,112,86,121)(43,122,87,113)(44,114,88,123)(45,124,89,115)(46,116,90,125)(47,126,91,117)(48,118,92,127)(49,128,93,119)(50,120,94,129)(51,130,95,101)(52,102,96,131)(53,132,97,103)(54,104,98,133)(55,134,99,105)(56,106,100,135)(57,136,81,107)(58,108,82,137)(59,138,83,109)(60,110,84,139), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,145,31,155)(22,154,32,144)(23,143,33,153)(24,152,34,142)(25,141,35,151)(26,150,36,160)(27,159,37,149)(28,148,38,158)(29,157,39,147)(30,146,40,156)(41,86,51,96)(42,95,52,85)(43,84,53,94)(44,93,54,83)(45,82,55,92)(46,91,56,81)(47,100,57,90)(48,89,58,99)(49,98,59,88)(50,87,60,97)(61,78,71,68)(62,67,72,77)(63,76,73,66)(64,65,74,75)(69,70,79,80)(101,112,111,102)(103,110,113,120)(104,119,114,109)(105,108,115,118)(106,117,116,107)(121,140,131,130)(122,129,132,139)(123,138,133,128)(124,127,134,137)(125,136,135,126)>;
G:=Group( (1,96,11,86)(2,87,12,97)(3,98,13,88)(4,89,14,99)(5,100,15,90)(6,91,16,81)(7,82,17,92)(8,93,18,83)(9,84,19,94)(10,95,20,85)(21,125,31,135)(22,136,32,126)(23,127,33,137)(24,138,34,128)(25,129,35,139)(26,140,36,130)(27,131,37,121)(28,122,38,132)(29,133,39,123)(30,124,40,134)(41,79,51,69)(42,70,52,80)(43,61,53,71)(44,72,54,62)(45,63,55,73)(46,74,56,64)(47,65,57,75)(48,76,58,66)(49,67,59,77)(50,78,60,68)(101,159,111,149)(102,150,112,160)(103,141,113,151)(104,152,114,142)(105,143,115,153)(106,154,116,144)(107,145,117,155)(108,156,118,146)(109,147,119,157)(110,158,120,148), (1,27,70,160)(2,141,71,28)(3,29,72,142)(4,143,73,30)(5,31,74,144)(6,145,75,32)(7,33,76,146)(8,147,77,34)(9,35,78,148)(10,149,79,36)(11,37,80,150)(12,151,61,38)(13,39,62,152)(14,153,63,40)(15,21,64,154)(16,155,65,22)(17,23,66,156)(18,157,67,24)(19,25,68,158)(20,159,69,26)(41,140,85,111)(42,112,86,121)(43,122,87,113)(44,114,88,123)(45,124,89,115)(46,116,90,125)(47,126,91,117)(48,118,92,127)(49,128,93,119)(50,120,94,129)(51,130,95,101)(52,102,96,131)(53,132,97,103)(54,104,98,133)(55,134,99,105)(56,106,100,135)(57,136,81,107)(58,108,82,137)(59,138,83,109)(60,110,84,139), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,145,31,155)(22,154,32,144)(23,143,33,153)(24,152,34,142)(25,141,35,151)(26,150,36,160)(27,159,37,149)(28,148,38,158)(29,157,39,147)(30,146,40,156)(41,86,51,96)(42,95,52,85)(43,84,53,94)(44,93,54,83)(45,82,55,92)(46,91,56,81)(47,100,57,90)(48,89,58,99)(49,98,59,88)(50,87,60,97)(61,78,71,68)(62,67,72,77)(63,76,73,66)(64,65,74,75)(69,70,79,80)(101,112,111,102)(103,110,113,120)(104,119,114,109)(105,108,115,118)(106,117,116,107)(121,140,131,130)(122,129,132,139)(123,138,133,128)(124,127,134,137)(125,136,135,126) );
G=PermutationGroup([[(1,96,11,86),(2,87,12,97),(3,98,13,88),(4,89,14,99),(5,100,15,90),(6,91,16,81),(7,82,17,92),(8,93,18,83),(9,84,19,94),(10,95,20,85),(21,125,31,135),(22,136,32,126),(23,127,33,137),(24,138,34,128),(25,129,35,139),(26,140,36,130),(27,131,37,121),(28,122,38,132),(29,133,39,123),(30,124,40,134),(41,79,51,69),(42,70,52,80),(43,61,53,71),(44,72,54,62),(45,63,55,73),(46,74,56,64),(47,65,57,75),(48,76,58,66),(49,67,59,77),(50,78,60,68),(101,159,111,149),(102,150,112,160),(103,141,113,151),(104,152,114,142),(105,143,115,153),(106,154,116,144),(107,145,117,155),(108,156,118,146),(109,147,119,157),(110,158,120,148)], [(1,27,70,160),(2,141,71,28),(3,29,72,142),(4,143,73,30),(5,31,74,144),(6,145,75,32),(7,33,76,146),(8,147,77,34),(9,35,78,148),(10,149,79,36),(11,37,80,150),(12,151,61,38),(13,39,62,152),(14,153,63,40),(15,21,64,154),(16,155,65,22),(17,23,66,156),(18,157,67,24),(19,25,68,158),(20,159,69,26),(41,140,85,111),(42,112,86,121),(43,122,87,113),(44,114,88,123),(45,124,89,115),(46,116,90,125),(47,126,91,117),(48,118,92,127),(49,128,93,119),(50,120,94,129),(51,130,95,101),(52,102,96,131),(53,132,97,103),(54,104,98,133),(55,134,99,105),(56,106,100,135),(57,136,81,107),(58,108,82,137),(59,138,83,109),(60,110,84,139)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,145,31,155),(22,154,32,144),(23,143,33,153),(24,152,34,142),(25,141,35,151),(26,150,36,160),(27,159,37,149),(28,148,38,158),(29,157,39,147),(30,146,40,156),(41,86,51,96),(42,95,52,85),(43,84,53,94),(44,93,54,83),(45,82,55,92),(46,91,56,81),(47,100,57,90),(48,89,58,99),(49,98,59,88),(50,87,60,97),(61,78,71,68),(62,67,72,77),(63,76,73,66),(64,65,74,75),(69,70,79,80),(101,112,111,102),(103,110,113,120),(104,119,114,109),(105,108,115,118),(106,117,116,107),(121,140,131,130),(122,129,132,139),(123,138,133,128),(124,127,134,137),(125,136,135,126)]])
47 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | ··· | 4G | 4H | ··· | 4M | 5A | 5B | 10A | ··· | 10F | 20A | ··· | 20L | 20M | ··· | 20T |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 20 | 20 | 4 | ··· | 4 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
47 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | D10 | D10 | D10 | 2+ 1+4 | 2- 1+4 | D4⋊6D10 | Q8.10D10 |
kernel | C42.180D10 | C42⋊2D5 | Dic5.Q8 | D10.13D4 | D10⋊Q8 | C4⋊C4⋊D5 | Dic5⋊Q8 | D10⋊3Q8 | C20.23D4 | C5×C4⋊Q8 | C4⋊Q8 | C42 | C4⋊C4 | C2×Q8 | C10 | C10 | C2 | C2 |
# reps | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 8 | 4 | 1 | 2 | 4 | 8 |
Matrix representation of C42.180D10 ►in GL10(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 35 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 34 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 32 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 32 |
0 | 0 | 0 | 0 | 0 | 0 | 32 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 32 | 0 | 0 |
7 | 35 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 34 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 32 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 |
0 | 0 | 0 | 0 | 0 | 0 | 32 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 |
G:=sub<GL(10,GF(41))| [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0],[40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0],[0,7,0,0,0,0,0,0,0,0,35,34,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,32,0,0],[7,8,0,0,0,0,0,0,0,0,35,34,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,9,0,0] >;
C42.180D10 in GAP, Magma, Sage, TeX
C_4^2._{180}D_{10}
% in TeX
G:=Group("C4^2.180D10");
// GroupNames label
G:=SmallGroup(320,1407);
// by ID
G=gap.SmallGroup(320,1407);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,758,219,100,1571,570,136,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a^-1*b^2,c*b*c^-1=b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^9>;
// generators/relations